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This paper reviews the reactive flux correlation function approach to studying 
the classical dynamics of activated processes in liquids. The possibilities and 
consequences of nonadiabatic electronic transitions in affecting this dynamics is 
also considered. We emphasize the feasibility of quantitative trajectory studies 
and the fact that these studies have yet to be fully exploited in the development 
of approximate theories of activated processes. 
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1. I N T R O D U C T I O N  

This paper reviews some of the principles relevant to activated processes 
occurring in liquids and other random fluctuating environments. An 
activated process is an infrequent event which carries a system between two 
or more relatively stable states. It is infrequent because barriers separate 
stable states. Barriers are regions of low probability which, in the simplest 
cases, correspond to configurations of relatively high energy. More 
generally, because of entropic considerations, we may consider barriers to 
be located in regions of high free energy. In the realm classical mechanics, a 
transition between stable states must occur by passing over a barrier. (In 
quantum theory, the barrier can be circumvented by tunneling.) Thus a 
barrier region is a transition state--a state that must be visited during the 
passage from one stable state to another. 

The study of barrier crossing has a long history in chemistry and 
physics. The renaissance of interest in the topic in the field of condensed 
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matter theory has often focused on the ideas introduced long ago by 
Kramers. (1) Since so much has been written on Kramers' perspective, there 
is no need to review it here. Instead, when considering classical dynamics, I 
will emphasize the correlation function approach which orginated with 
Yamamoto. (2) Calculations based upon generalizations ~3'4) of this approach 
have enabled exact numerical studies of such varied phenomena as 
interstitial diffusion in solids, (5) desorption and diffusion rates on 
surfaces, (6) the kinetics of isomerization of small solvated molecules, (7) 
ergodicity and chaos in isolated molecules, (8~ and the rates of confor- 
mational transitions in biopolymers. (9~ Indeed, the methodology is now at 
such a stage that is often straightforward and practical to perform accurate 
trajectory calculations of rates of classical activated processes in liquids. In 
focusing on the feasibility of trajectory studies, I am not belittling the 
advantages of approximate analytical theories. I am, however, calling 
attention to the fact that nontrivial classical model systems can be 
examined quantitatively, and existing theoretical treatments have yet to 
grapple with and successfully explain those simulations. 

The word "classical" implies a dynamics for which the relevant degrees 
of freedom evolve in accord with Newton's equations of motion. In such a 
model, the role of quantum mechanics is to determine the Born-Op- 
penheimer potential energy surface on which the classical dynamics occurs. 
This simplified model is limited for two reasons. First, within the Born-Op- 
penheimer or adiabatic approximation, the true dynamics of nuclei may 
exhibit the quantum mechanical effects of diffraction and tunneling. For 
any chemical reaction involving the transfer of protons, these effects can be 
particularly important. For more massive particles, however, these con- 
siderations are less significant. 

A second reason for the breakdown of the classical model is the 
possibility of nonadiabatic transitions. In particular, electronic transitions 
between different Born-Oppenheimer potential surfaces will alter the 
course of a classical trajectory and thereby exert a strong influence on 
activated processes. When these electronic transitions are relatively infre- 
quent (in a sense made more precise below), their effects can be treated 
with stochastic surface hopping approximations, (1~ the simplest and oldest 
of which is the Landau-Zener-Stueckelberg model. (re'H) These methods 
have been very useful in treating gas phase chemical dynamics. In adopting 
these successful theories to treat the effects of nonadiabatic transitions on 
activated processes in condensed phases, however, an important 
generalization must be made. In particular, one must account for the fact 
that nonadiabatic transitions are promoted not only by the dynamics of the 
reaction coordinates, but also by the time dependence of fluctuations of the 
condensed phase environment. 
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Unlike the state-of-the-art for classical activated transitions in conden- - 
sed phases, the appropriate methodology for treating the quantum 
mechanical aspects of these processes is not well understood. In my dis- 
cussion of these effects, I will focus primarily on the role of nonadiabatic 
transitions, and I describe how for chemical reactions involving charge 
transfer, the dynamics of the condensed phase environment can 
significantly alter the rate of nonadiabatic transitions from that in the 
absence of the environment. 

2. CLASSICAL A C T I V A T I O N  A N D  S E P A R A T I O N  OF 
T I M E  SCALES 

To begin, let us consider the transitions between states A and B as pic- 
tured in Fig. 1. We will imagine that the reaction coordinate q is a classical 
variable and that it is coupled to a classical bath of other degrees of 
freedom. The "bath" can both donate and remove energy from the reaction 
coordinate. Both are crucial to an activated process. The coordinate 
orginally trapped in well A must acquire energy to become activated and 
mount the barrier, and subsequently it must lose energy to become trapped 
in well B. 

For real molecules which contain more than one degree of freedom, 
part of the bath is intramolecular involving modes of the reacting species 
other than the reaction coordinate(s). The rest of the bath is intermolecular 
involving the degrees of freedom in the surrounding solvent environment. 

V(q) 

/ 

I 
I 

Fig. 1. A potential, V(q), for the reaction coordinate, q involved in activated transitions 
between region A(q < q*) and region B(q> q*). 
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The size of the energy fluctuations in the bath are characterized by a 
temperature T. We assume that the activation energy, E*, is much larger 
than kBT (ke is Boltzmann's constant). According to the principle of 
equipartition, keT/2 is the average energy of each mode or degree of 
freedom in the bath. Indeed, this principle can serve as our definition of T. 
Further, kB T is the characteristic size of energy fluctuations for a given 
degree of freedom. It is for this reason that the condition 

E*/keT~> 1 (1) 

guarantees that the transitions between regions A and B will be infrequent 
events. In particular, e x p ( - E * / k ~ T )  is approximately the probability of 
being at the transition state located in the vicinity of q = q*, and the system 
must pass through that state in changing from A to B. Thus the rate of an 
activated process is a factor of exp(-E*/ksT) smaller than those not 
requiring activation. In other words, activated processes are infrequent 
events due to the unlikely occurrence of a spontaneous fluctuation in which 
the modes in the bath (each with an average energy of k~T/2) conspire to 
deposit energy E* in the reaction coordinate. 

Once the reaction coordinate is activated, it proceeds from region A to 
region B in a time of roughly l/<]vt), where <]vl>ocT 1/2 is the average 
speed of the reaction coordinate. If we now assume that activated trajec- 
tories are undeterred in crossing the transition state, we can estimate the 
rate constant to go from A to B (or vice versa) as 

k ~ (< I vl )/l) exp( - E*/kB T) = kTST (2) 

The approximation that the trajectory moves through the transition state 
undeterred (i.e., the activated trajectory will not recross the transition 
state) is the transition state theory (TST) approximation. This observation 
is our reason for using the notation kTs T for the right-hand side of Eq. (2). 
The reader might object that I am making no distinction between A ~ B 
and B--* A transition rate constants. They are, of course, different, and the 
difference is related to an equilibrium constant by the principle of detailed 
balance. For  simplicity, we can assume the differences contribute a factor of 
the order of unity. The precise details will be ironed out, however, when we 
consider the exact formula for the rate constants, Eq. (6) below. 

The time k - l =  ~rxn is the average time between reactions, i.e., trans- 
itions carrying the system from state A to state B. If we sit and watch the 
system as it evolves coupled to a fluctuating bath, we will need to wait a 
time of roughly Vrxn before seeing a transition between states A and B. The 
typical time scale for nonactivated molecular processes, however, is 
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- I N  Zmo~,-~Vo = ( tvl) / l .  The separation o f  time scales inherent to an activated 
process is 

(1/'Cmol) ~ VO = ( (  IVt }/l)>~k = 1/Vrxn (3) 

In making the distinction between the time scales for activated and 
non activated processes, I have adopted an over simplified picture in which 
all the fast or frequent dynamics is characterized by one time, Zmol- In 
reality, things are much more complicated. Here are just a few of the many 
fast times or frequencies that may be of relevance: the frequency for 
motions in either of the stable wells, the time for an activated trajectory to 
cross the barrier, the time for an activated trajectory to lose energy k~ T to 
the bath, and the correlation time(s) for fluctuating forces imposed on the 
reaction coordinate by the bath. The precise specification of all these time 
scales will be important in a quantitative theory of specific activated 
processes, but what is crucial to our general discussion is that all these 
times are very small in comparison to Zrxn. In this context, Zmo~ refers to the 
collection of all those short times characterizing dynamics relevant to an 
activated process. The degree of relevance is determined by how much the 
dynamics creates deviations from TST. 

3. THE T R A N S M I S S I O N  COEFFICIENT, COUPLING, AND 
ENERGY FLOW 

The corrections to the TST estimate of rate constants are conveniently 
expressed in terms of the transmission coefficient, ~:. It is defined by 

k = ~ckTsx (4) 

and roughly speaking, ~c is the fraction of successful or undeterred activated 
trajectories. This quantity x depends upon the topography of the potential 
surface of the reaction coordinate and upon the nature of the coupling of 
the coordinate to the bath and the time scales associated with that 
coupling. While it is therefore a highly system-specific quantity, we can still 
make some general qualitative statements about its behavior. 

In particular, we know that if there is no coupling of the reaction 
coordinate to the bath, then there is no way to activate a trajectory. Nor is 
there any way to deactivate one: If already possessing the energy E*, the 
reaction coordinate will retain that energy, rebound off the potential wall, 
recross the transition state, thereby violating the TST approximation, and 
fail to react. From this description, it is seen that ~c is zero when the coupl- 
ing to the bath is zero. Further, an increase in that coupling will lead to an 
increase in ~c and an increase in rate. These observations are the basis of the 
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Lindemann and Hinshelwood mechanisms (12) of unimolecular kinetics. 
These mechanisms say that for very low coupling, the rate constant is 
proportional to collision frequency or pressure of the environment. 

The opposite extreme is the regime of high coupling. Here, as first 
explained by Kramers, (1) the reaction coordinate will be buffeted by the 
fluctuating environment. The resulting diffusive motion leads to a lowering 
of the rate as the coupling increases. The transmission coefficient is, 
therefore, a nonmonatonic function of the coupling as illustrated 
schematically in Fig. 2. 

It is clear that the nonmonatonic behavior of x is inarguable. But it is 
also clear that the precise behavior of ~:, arising from a competition 
between inertial and diffusive effects, is highly system specific. Because of 
this specificity, it is a difficult experimental and theoretical issue to deter- 
mine where to locate a given system on the curve drawn in Fig. 2. The 
"coupling" referred to in Fig. 2 is a quantity that determines the time 
required for the bath to remove energy and/or alter the direction of an 
activated reaction coordinate. The proper choice for parameterizing such a 
quantity is not always obvious. For example, consider an isomerization in 
a polyatomic molecule. If the time scale for intramolecular vibrational 
energy to be transferred is short enough [i.e., if the intramolecular 
vibrational rearrangement (IVR) rate is rapid enough], then the isolated 
molecule may already be in the high coupling regime, and the increase of 
rate with increasing coupling will not be observed. Further, when the 

A 

I ~- Kremers regime, 

~ oc (coupl ing)  - I  

OV I ~ I- coup ing to bath 
Lindemonn regime, q~-I 
K" oc coupl ing 

J 

f 
---~q 

q~- 

Fig. 2. The transmission coefficient, K, for a classical activated process, and typical non- 
transition state theory trajectories characteristic of the low-coupling (Lindemann) and high- 
coupling (Kramers) regimes. The latter are pictured at the bottom left and right, respectively. 
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effects of a liquid environment are to be considered, the simplest ideas 
would say that in the high coupling regime, ~c is proportional to a diffusion 
constant or the reciprocal of a friction constant. The appropriate friction, 
however, depends upon the frequencies of motion of the reaction coor- 
dinate during the activated process and the ability of the bath to respond 
to and affect motions at those intrinsic frequencies. (13'~4) Here, the relevant 
time scale is Zmo~, and the response of an environment at the frequency rmo~- 
is generally quite different than that at the much lower frequency "(rxn-1, 

4. T r a j e c t o r y  C a l c u l a t i o n s  and S t a t i s t i c a l  C o n s i d e r a t i o n s  

Useful guidance for understanding these complicated issues can be 
obtained from exact trajectory calculations. Indeed, any approximate 
efforts to resolve these issues should be tested against simulations of model 
systems, the models constructed to show these effects. To perform exact 
trajectory calculations, however, requires some thought since 
straightforward computer simulations are not necessarily practical because 
of the infrequency of activated events. A typical time step for integrating 
molecular motions is no larger than 10 14 sec. Yet the time between com- 
pleted activated events is no less than 102rmol corresponding to perhaps 
10 - l~  or 10 .9 sec in a liquid. Thus, a straightforward trajectory must be 
followed for thousands of time steps to see just one activated process, and 
statistically meaningful results require thousands of these observations. 

To devise an efficient method, one wants to avoid spending com- 
putation time observing portions of trajectories which are not intimately 
involved in the activated event. Here it is useful to note that all activated 
processes pass through the transition state-- the bottleneck from which the 
infrequency arises. Thus imagine studying only those trajectories which at 
time t - - 0  are at the transition state. Since this state is unstable, typical 
transient dynamics away from it and towards a stable situation will occur 
in a relatively rapid time t~'~mol. This idea leads one to the reactive flux 
correlation function defined as follows: 

k(t) = (v(0) 6 [ q ( 0 ) -  q*] H~[q(t)] ) (5) 

Here, q(t) is the reaction coordinate at time t; v(t)= q(t) is the velocity of 
that coordinate; HB[q(t)] is the characteristic function for stable state B, 
i.e., it is 1 for q(t)>q* and it is zero otherwise (we can construct more 
general criteria for the transition surface between stable states A and B, 
and such generalization will not alter our discussion in any fundamental 
way). Finally, the angle brackets indicate the equilibrium ensemble average 
over the initial conditions (coordinates and momenta at t = 0 )  of all 
degrees of freedom, both the reaction coordinate and the bath. 
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To compute k(t), one begins all trajectories with q (0 )=  q*, and then 
averages the velocity (i.e., the flux) for all of those trajectories for which at 
time t, q ( t )>q* .  Since each trajectory begins in the unstable transition 
state, the relaxation of k( t )  to a plateau value, k, will occur in a rapid time 
Zmol" After a very long time t>~  . . . .  however, at least a few subsequent 
completed activated events will have occurred, HB[q( t ) ]  will then be 
uncorrelated from the initial flux, and k( t )  will have relaxed to zero. This 
anticipated qualitative behavior of k( t )  is sketched in Fig. 3. The initial 
decay to the plateau (it appears to be a plateau on the scale of short times) 
is a transient relaxation from the transition state. This transient relaxation 
occurs in the time it takes enough energy to flow from the activated 
reaction coordinate to cause a trapping of the trajectory in a region of 
one of the stable states. The longer time decay corresponds to the 
population relaxation which characterizes the relaxation of spontaneous 
fluctuations in the concentration HB(t  ) from its equilibrium value 
( H s [ q ( t ) ] )  = xB = 1 - x A  (xA and xB are the equilibrium mole fractions of 
states A and B, respectively). 

5. Correlat ion Function Formula for  the Rate Constant  

The dynamics of the spontaneous fluctuations and the decay to 
equilibrium of nonequilibrium concentrations are connected by the fluc- 
tuation-dissipation theorem. (15~ Through this connection, it can be 
shown (2'4) that the plateau value, k, is the generic rate constant for the 
A ~ B activated processes. In particular, 

kA ~ B = k(At ) /xA - k/xA (6) 

kTST 

k 

0 

Fig. 3. 
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Reactive flux correlation function for a classical activated process. 
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where At is a time in the plateau region, i.e., 

%'mol < A t ~ Trx n (7) 

Further, the TST estimate of the rate constant is 

k(TST) = k(O + )/xA 
A ~ 8  (8) 

= (vO(v))q .  (6 (q  - q*) ) /2XA 

and, therefore, the transmission coefficient is 

= k/k(O+ ) (9) 

= (vH~[q( t )] )q*/ (VO(U)  )q* 

Here, ( - . - ) q .  indicates the average over initial conditions performed with 
q(0) = q*, q and v are abbreviations for q(0) and v(0), respectively, and O(v) 
is 1 for positive v and zero otherwise. 

The derivation of Eq. (8) follows directly form considering the 
dynamics involved in Eq. (5) for very small t. (4) The average of the c~ 
function in Eq. (8) is the probability density for observing the reaction 
coordinate at the transition state. From the reversible work principle of 
statistical mechanics, we know that this probability is proportional to the 
Boltzmann factor for the free energy of activation. Thus, for example, when 
considering a thermal system the quantity E* introduced in our qualitative 
discussion above is a Helmholtz free energy. It is interesting to note that 
when the microcanonical ensemble is employed in the averaging, the TST 
rate constant obtained from Eq. (8) is the RRKM rate constant of 
unimolecular kinetics. (8'12) 

A correlation function formula for the rate constant like that shown in 
Eq. (6) was first derived by Yamamoto on the basis of a physical 
argument. (2/ I rederived the relationship in 1978 by essentially rephrasing 
Yamamoto's arguments in terms of projecton operator methods. (4) At the 
price of some rigor, elementary derivations of the result can also be 
formulated. (16) The derivation in Ref. 4 shows that Eq. (6) is an 
approximation in the sense that it applies only to activated processes. In 
particular, the formula contains relative errors of the order of 
e x p ( -  E*/kB T). It differs from other correlation function formulas for rate 
constants (4'17) by terms of similar size. For an activated transition where E* 
is large compared to kB T, the errors and differences are negligible. If E* 
was not large, the process would not be infrequent, and the utility of 
Eq. (6) in making efficient the simulation of such events would no longer 
be especially significant. 
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It is important to appreciate that the validity of Eq. (6) is relatively 
independent of the nature of the activated dynamics. For  example, use of 
Eq. (6) does not imply that trajectories evolve diffusively as appropriate in 
the high coupling regime; the formula applies equally well to the cir- 
cumstances where the reaction coordinate moves inertially. 

Equation (6) rests on two fundamental assumptions: (1), the validity 
of the fluctuation~tissipation theorem and (2) the separation of time scales 
where the activated event is the only slow process of relevance. The first of 
these is the statement that we believe a nonlinear dynamical system under 
investigation at or near equilibrium is sufficiently robust that it remains 
stable and responds linearly to arbitrarily small disturbances. While it is 
unlikely that one will ever derive it for any interesting system, it is equally 
unlikely that we will ever see any significant violations to it for activated 
processes in chemistry and biology. The second assumption, however, is 
more questionable. It is a statement about phenomenology and the 
existence of a rate constant. If other slow processes are important or if 
A ~ B transitions are not activated events and occur on a fast time scale, 
then the linear or unimolecular kinetics in which kA ~ 8 is defined becomes 
invalid. At the microscopic level of molecular dynamics, one may note that 
the plateau value behavior of k( t )  is a necessary and sufficient condition for 
the existence of the rate constant. This important aspect of considering the 
time dependence of k( t )  was first discussed and explored in the paper by 
Montgomery et al. (18) When the plateau value behavior is not observed, 
one must conceive of a different phenomenology (or higher-order kinetics) 
that may involve several transport coefficients or relaxation times. 

Equation (6) is analogous to the Green-Kubo formulas for the trans- 
port coefficients relevant to hydrodynamic relaxation. (is) Hydrodynamic 
fluctuations can evolve over macroscopic times, yet the dissipation which 
determines the transport coefficients generally occurs over much shorter 
microscopic times. The mathematical structure of the analogy is discussed 
in Ref. 4. 

6. C A L C U L A T I O N S  OF RATES F R O M  C O R R E L A T I O N  
F U N C T I O N  F O R M U L A  

Calculations of rate constants based upon Eq. (6) break into two parts 
as is evident from the factorization exhibited in Eqs. (8) and (9). The time 
independent or equilibrium calculation involved in Eq. (8) can be perfor- 
med by Monte Carlo umbrella or importance sampling. (19 21) It should be 
appreciated, however, that calculations based upon the Prat t -Chandler  
theory of solvation (21 23) and the RISM equation (23) are also possible, and 
this approach can be both accurate and less computationally intensive than 
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simulations. 2 Analogous theories for the dynamical calculations involved in 
Eq. (9) have yet to be fully tested. (Some recent suggestions, t25) however, 
seem quite promising.) At present, reliable results for nontrivial systems 
must be obtained by sampling several thousand short trajectories (each of 
time duration ~mol) orginating with q (0 )=  q*. 

This two-step approach of determining the equilibrium statistics of the 
transition state [Eq. (8)], and the subsequent running of short trajectories 
from that state is nearly identical to Bennett's algorithm for the molecular 
dynamics simulation of infrequent events. (3~ [Bennett suggests running tra- 
jectories both forward and backward in time, but Eq. (6) requires only 
those for positive time. In Ref. 4 it is shown that as a consequence of 
averaging over initial conditions, both procedures yield the same final 
result though Eq. (6) appears to be the more efficient by a factor of 2.] 
These procedures are closely related to earlier ideas adopted in trajectory 
studies of gas phase kinetics. (25) Berne (27) has recently reviewed the work 
on simulations. Though computationally intensive, the methodology is 
indeed practical. In addition to Bennett's application to the diffusion of 
interstitial particles in solids, (5~ the approach has been applied to study 
isomerization dynamics of chain molecules both with full molecular 
dynamics of several hundred liquid particles (7b) and with stochastic models 
of the solvent. (Ta) Further, as mentioned in the Introduction, the method 
has also been used with profit to study desorption dynamics from solid-gas 
interfaces (6a~ and diffusion on solid surfaces. (6b) Simple models for 
intramolecular dynamics of isolated molecules have been examined with 
this technique, (8~ and the method also forms the basis for analyzing confor- 
mational rearrangements in biopolymers. (9~ 

The results of these simulations provide benchmarks for approximate 
treatments of activated dynamics. Satisfactory theoretical explanations of 
the existing simulations have yet to be developed, 3 but when they are, we 
will have moved a long way toward unraveling the complexities of conden- 
sed phase effects on activated molecular processes. 

7. R O L E S  O F  Q U A N T U M  D Y N A M I C S  

The complexities we have referred to above become even more 
interesting when quantum mechanical effects are included in our con- 
siderations. While it is not always possible, let us assume that we can par- 
tition our thoughts on this subject into two categories: (1) those referring 

2 For recent work along these lines see Ref. 24. 
3 One might imagine, for example, a detailed comparison between the simulations in Ref. 7 

and the recent theories presented in Ref. 28. 
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to dynamics of nuclei evolving on a single Born-Oppenheimer surface, and 
(2) those concerned with the effects on nonadiabatic electronic transitions 
between different Born Oppenheimer states. 

In the first case, quantum effects are due to nuclear zero point motion 
and tunneling. There is an extensive literature examining the role these 
phenomena for gas phase reaction. (29) For  condensed phase reactions, 
much less has been done. The parameter which signals the importance of 
these quantum effects is the thermal wavelength 

2 = h/(ke Tm) 1/z (10) 

where m is the reduced mass of the reaction coordinate and 2~h is Planck's 
constant. Quantum dispersion--tunneling and zero point motion are 
significant when 2 is comparable to or larger than the typical lengths 
characterizing the intermolecular potential (e.g., the length l in Fig. 1 ). For  
a proton at room temperature, 2 ~0.3 ,&. 

The appropriate starting point for a systematic treatment of the effects 
of the uncertainty principle or dispersion in nuclear coordinates would 
seem to be the quantum mechanical generalization of Eq. (6). This 
generalization was in fact written down by Yamamoto (2) in his seminal 
paper on the time correlation function formulation of rate constants. In the 
quantum mechanical case, it is interesting to note that in the limit t--* 0 +, 
the reactive flux k(t)  approaches zero rather than the finite value of kTST 
that it attains in the classical case. (3~ This fact exasperates systematic 
efforts to define the meaning of quantum transition state theory. 

The first attempt at using this formulation to treat a quantum- 
activated process coupled to a fluctuating environment was made by 
Wolynes. ~31) This calculation determined the transmission coefficient for a 
reaction coordinate which moves on an inverted parabolic potential and is 
linearly coupled to a harmonic bath. When the dispersion in the reaction 
coordinate is large enough (i.e., when quantum effects are large due to a 
large spatial extent of the wave function for the reaction coordinate), the 
unphysical nature of the inverted parabolic potential model becomes 
apparent, and Wolynes' calculation exhibits an unphysical divergence. To 
correct this deficiency, one must consider the nonlinear corrections to 
Wolynes' harmonic approximation. (32) Many other applications of the 
quantum generalization of Eq. (6) are possible by exploiting the techniques 
employed in gas phase reaction dynamics calculations and adding to these 
the models for fluctuating environments developed in classical liquid state 
theory. Undoubtedly, we will see much work along these lines in the near 
future. 4 

4 For an example of recent work along these lines see the study of proton tunneling in colinear 
FH...F complexes by J. T. Hynes in this issue (Ref. 33). 
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8. N O N A D I A B A T I C  T R A N S I T I O N S  

The second category of quantum effects, the rote of nonadiabatic 
transitions, involves the mediation of activated processes by the dynamics 
of electronic states. In Fig. 4, we show two neighboring potential surfaces 
corresponding to two different adiabatic electronic states. If confined to the 
ground state potential surface, the movement from region A to B involves a 
classical activated process. Owing to the proximity of the excited state sur- 
face in the barrier region, however, electronic transitions may occur which 
can significantly alter the course of a barrier crossing. Further, in the case 
shown in Fig. 4, the alteration will lower the transmission coefficient from 
its classical behavior since motion in the excited potential will be 
oscillatory and therefore violate the unidirectionality assumed in transition 
state theory. 

Incidentally, the type of potential surfaces shown in Fig. 4 are typical 
of reactions which involve a significant degree of charge transfer as the 
nuclei move through the transition stateJ 34) In that case, at the transition 
state for the nuclei, A/h is the frequency with which the electronic charge 
will fluctuate between two localized regions (i.e., between two diabatic 

i the electrons states). When this frequency is very high compared to rmol, 
will successfully adjust and equilibrate to the nuclear motions, and the 
dynamics will be adiabatic, evolving on the ground state surface. When A/h 
is not much larger than Zmol,-1 however, nonadiabatic effects due to the 
relatively low frequency of transitions between diabatic states will be 
important. From the golden rule of time-dependent perturbation theory, (35) 
we may estimate the rates of the transitions between diabatic surfaces. A 
precise answer will be system specific, but in general, the rate estimated in 
this way will scale as A 2. Since several such transitions may occur while the 

V q) 

v 

Fig. 4. Two neighboring Born-Oppenheimer (i.e., adiabatic) potential surfaces for the reac- 
tion coordinate q. 



62 Chandler 

nuclei are in the transition state region, we must consider their cumulative 
effect. If we assume each transition is uncorrelated from the rest, we obtain 
an exponential relaxation law for the equilibration of the electronic states 
to the nuclear configuration. 5 Within this approximate approach, one 
predicts that the probability for electronic state equilibration (i.e., the 
probability for not making a transition between adiabatic states) is given 
by 

p ~ l - e x p ( - z A  2) (11) 

where z will depend upon the nature of the classical dynamics of the nuclei 
as they pass through the transition state. For  example, z will increase with 
the time spent in the transition state region. The degree with which it 
increases can be estimated from Landau Zener-Stueckelberg theory. (11'34) 
This traditional theory of nonadiabatic transitions produces a formula of 
the type given in Eq. (11). 

Let us adopt this equation. Further, assume that any transition to the 
excited Born-Oppenheimer surface totally randomizes the directionality of 
a classical trajectory. Then we arrive at the following estimate for the trans- 
mission coefficient (i.e., the fraction of undeterred trajectories crossing the 
transition state) 

K ~ ~cclp ~ ~cot(1 - e-Za2) (12) 

where ~Cc~ is the transmission coefficient that would be obtained from 
classical dynamics occuring on the ground electronic state potential sur- 
face. Formulas of this type have provided the basis for recent qualitative 
discussions of the role of nonadiabatic transition in charge transfer 
reactions. (37'38/The equation leads us to expect a strong dependence of rate 
constants on the energy splitting A when zA 2 is not large. This is the non- 
adiabatic regime. In the opposite adiabatic regime, the rate will be insen- 
sitive to A. 

9. S U R F A C E  H O P P I N G  M O D E L S  A N D  C H O I C E  OF 
A D I A B A T I C  S T A T E S  

The ideas that surround this type of discussion can be made more 
quantitative with surface hopping models. (39'4~ Here, one performs trajec- 
tory calculations which are interrupted stochastically be transitions to dif- 
ferent electronic states. The probability for making such a transition is 
determined self-consistently based upon the nature of the nuclear dynamics 

5 An explicit calculation of this type has been described by Chakravarty and Leggett (Ref. 36). 



Classical and Quantum Dynamics in Activated Processes in Liquids 63 

and the coupling of that dynamics to the electronic states. There are 
various formulations of this methodology, (1~ and one such method (4~ has 
been modified and applied to the problem of iodine recombination in a 
liquid. (41) One may expect more applications of this type in the future, but 
the accuracy of such calculations will depend upon the choice of adiabatic 
states. 

The issue we refer to here is understood as follows. The surface hop- 
ping approach is a correct dynamical model in the limit for which trans- 
itions between adiabatic surfaces occur relatively infrequently. If this con- 
dition is not met, phase interference will be more complicated than that 
depicted in the surface hopping picture. If transitions are indeed infrequent, 
it must mean that the adiabatic states are very nearly good stationary elec- 
tronic states. Now the natural question to ask is what are reasonable 
approximations to stationary electronic states when the activated 
molecular complex under consideration is coupled to a time-dependent 
fluctuating environment? An answer to this question is required to obtain 
accurate results from a surface hopping calculation of nonadiabatic 
transitions in liquids. One possible answer is obtained from the so-called 
"effective adiabatic" (EA) approximation which Carmeli and I have 
developed. (42) 

The basic idea in the EA theory is to construct a reference system in 
which the environment contains only zero frequency (i.e., adiabatic) fluc- 
tuations. The parameters which define this reference system are adjusted 
variationally to optimize the ability of the reference system to mimic the 
behavior of the full nonadiabatic system. The stationary states of the 
reference system are then the optimum adiabatic states. 

To make the discussion a bit more specific, let us consider a 
Hamiltonian of the form 

H = ~  Ii) Ei(il + ~ l i)  V~(x)(jl + HB(x; coB) 
i i , j  

(13) 

where Ii) and Ei are the Born Oppenheimer electronic states and energies, 
respectively, of the isolated molecular complex, Vo.(x ) is the coupling 
of those states with the bath, x denotes the fluctuating variable(s) of 
the bath, HB is the bath Hamiltonian, and co 8 denotes the frequency(ies) 
characterizing the bath fluctuations. When ~o B ~ 0, the bath is adiabatic, 
and the form of the EA reference Hamiltonian is 

HEA = ~  li)  E;(il + ~  [i) V~(x)(j] + H e ( x ;  0) (14) 
i i , j  

where E; and V~.(x) are the quantities to be determined variationally. In 

822/42/1-2-5 
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particular, one exploits the standard Gibbs-Bogoliubov-Feynman 
bound (43) for the partition function, Q, 

Q >~ QEA exp((AS)EA) (15) 

where AS is the differences between the action in Euclidian time of the 
actual system and that of the reference system. The notation ( ' ' ' ) z a  
indicates an average over all quantum paths weighted in accord with the 
EA reference action functional. One determines the variational parameters 
characterizing the reference system by maximizing the right-hand-side of 
Eq. (15). The technical details are discussed in Ref. 42. 

10. I M P L I C A T I O N S  OF T H E  EFFECTIVE A D I A B A T I C  
A P P R O X I M A T I O N  

The simplest case for which this theory can be applied is the spin- 
boson Hamiltonian with a monochromatic bosonic field. In particular, i 
spans only the two states 1 and 2, the energy difference between them is 
A = E 2 - E 1 ,  the coupling matrix is Vo.(x ) o c x ( 1 - ~ ) ,  and the bath con- 
tains only one harmonic with fundamental frequency co 8. This model is a 
two-level system linearly coupled to an Einstein crystal. It represents a 
nonlinear and infinite state quantum problem that cannot be solved in 
closed form. Nevertheless, the EA treatment of the model casts it in the 
form of a statistical distribution of two state problems requiring the 
diagonalization of a 2x 2 matrix; and this simple treatment has been 
shown to yield quantitatively accurate results for correlation functions and 
the partition function. (42) 

In Fig. 5 we consider the results of the EA theory applied to the 
monochromatic spin-boson Hamiltonian. The choice of parameters 
employed in the illustrated calculations are typical of those that might be 
encountered in liquid state activated processes involving charge transfer. 
The coupling to the bath would then be primarily of a dipolar nature, and 
the bath variable x would correspond to the local fluctuating electric field. 
Figure 5 shows how the renormalized energy splitting, d', changes as a 
function of the bath frequency, coB. The reduction of the energy splitting is 
due to the fact that in this class of models, fluctuations in the environment 
lead to localization--a diminution of tunneling or resonances of electrons. 
It is this reduced or renormalized splitting that properly belongs in the 
estimate made in Eq. (12) since it is A'/h which characterizes the electronic 
tunneling rate under the influence of a fluctuating medium. Therefore, 

K ~t%z(1 - - e  -z3'2) (16) 
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Fig. 5. Renormalized energy splitting of a two-state system coupled to an Einstein crystal 
(i.e., a monchromatic Gaussian bathe) as a function of the frequency of the bath, coB, at a few 
values of A and S. The latter characterizes the strength of coupling between the two states 
system and the bath. In particular, S is the solvation energy in the "classical limit" 
(A/coB-,O), and /~ is k~lT. Note that in the convention employed in this paper, A is the 
spacing between the levels, while in Ref. 42, A is half the spacing between the levels. 

accounts for the nonadiabatic transitions induced by the time dependence 
of the fluctuations in the environment. Since A '2 can be significantly smaller 
than A 2, we see that it is possible for the bath fluctuations to alter the 
dynamics of an activated process from a purely classical adiabatic barrier 
crossing to a dynamics strongly influenced by nonadiabatic electronic 
transitions. This prediction, I believe, deserves serious consideration in any 
theoretical work concerned with the role of nonadiabatic transitions in 
condensed phase activated processes. 
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